\(\int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx\) [64]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 48 \[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {\sqrt {\frac {2}{33}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right ),\frac {1}{3}\right )}{\sqrt {-5+2 x}} \]

[Out]

1/33*EllipticF(1/11*33^(1/2)*(1+4*x)^(1/2),1/3*3^(1/2))*66^(1/2)*(5-2*x)^(1/2)/(-5+2*x)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {122, 120} \[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {\sqrt {\frac {2}{33}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right ),\frac {1}{3}\right )}{\sqrt {2 x-5}} \]

[In]

Int[1/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(Sqrt[2/33]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/Sqrt[-5 + 2*x]

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 122

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[b*((c
+ d*x)/(b*c - a*d))]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\frac {2}{11}} \sqrt {5-2 x}\right ) \int \frac {1}{\sqrt {2-3 x} \sqrt {\frac {10}{11}-\frac {4 x}{11}} \sqrt {1+4 x}} \, dx}{\sqrt {-5+2 x}} \\ & = \frac {\sqrt {\frac {2}{33}} \sqrt {5-2 x} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right )|\frac {1}{3}\right )}{\sqrt {-5+2 x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.47 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.65 \[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {\sqrt {\frac {-2+3 x}{1+4 x}} (1+4 x) \sqrt {\frac {-10+4 x}{11+44 x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {11}{3}}}{\sqrt {1+4 x}}\right ),3\right )}{\sqrt {2-3 x} \sqrt {-5+2 x}} \]

[In]

Integrate[1/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

-((Sqrt[(-2 + 3*x)/(1 + 4*x)]*(1 + 4*x)*Sqrt[(-10 + 4*x)/(11 + 44*x)]*EllipticF[ArcSin[Sqrt[11/3]/Sqrt[1 + 4*x
]], 3])/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]))

Maple [A] (verified)

Time = 5.33 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.69

method result size
default \(\frac {F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right ) \sqrt {5-2 x}\, \sqrt {22}}{11 \sqrt {-5+2 x}}\) \(33\)
elliptic \(\frac {\sqrt {-\left (-2+3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}\, \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{121 \sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}\, \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}\) \(94\)

[In]

int(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/11*EllipticF(1/11*(11+44*x)^(1/2),3^(1/2))*(5-2*x)^(1/2)*22^(1/2)/(-5+2*x)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 11, normalized size of antiderivative = 0.23 \[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {1}{6} \, \sqrt {-6} {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right ) \]

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(-6)*weierstrassPInverse(847/108, 6655/2916, x - 35/36)

Sympy [F]

\[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {1}{\sqrt {2 - 3 x} \sqrt {2 x - 5} \sqrt {4 x + 1}}\, dx \]

[In]

integrate(1/(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)

[Out]

Integral(1/(sqrt(2 - 3*x)*sqrt(2*x - 5)*sqrt(4*x + 1)), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {1}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Giac [F]

\[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {1}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate(1/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {1}{\sqrt {2-3\,x}\,\sqrt {4\,x+1}\,\sqrt {2\,x-5}} \,d x \]

[In]

int(1/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)),x)

[Out]

int(1/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)), x)